
D T, FILE COPY

C4D

O DIFFERENCES BETWEEN BUILDING A TRADITIONAL DSS AND AN ODSS:
LESSONS FROM THE AIR FORCE'S ENLISTED

FORCE MANAGEMENT SYSTEM

Warren E. Walker

August 1989

DTIC
ELECTE
ovo 811 I

P-7584

'ApwmvPd for puho,~s

I I

I

The RAND Corporation

Papers are issued by The RAND Corporation as a service to its profes-
sional staff. Their purpose is to facilitate the exchange of ideas among
those who share the author's research interests; Papers are not reports
prepared in fulfillment of RAND's contracts or grants. Views expressed
in a Paper are the author's own and are not necessarily shared by RAND
or its research sponsors.

The RAND Corporation, 1700 Main Street, ' 0 Box 2138. Santa Monica, CA 90406 2138

PUBLICATIONS
DEPARTMENT

ERRATUM

P-7584 Differences between Building a Traditional DSS and an ODSS:

Lessons from the Air Force's Enlisted Force Management System, by
Warren E. Walker, August 1989

This replaces the figure on page 33.

7 CG C

IBM'

De ense
data FEP FEP

network

AFMPC

Fig. C -TuicermanagemeiL sy.,Lem architecture

RAN D

-1-

DIFFERENCES BETWEEN BUILDING A TRADITIONAL DSS

AND AN ODSS: LESSONS FROM THE AIR FORCE'S

ENLISTED FORCE MANAGEMENT SYSTEM 1

Warren E. Walker

The RAND Corporation and Delft University uf Technology

I. INTRODUCTION

Early descriptions of decision support systems (DSS's) were based on the

paradigm of a single decisionmaker at a stand-alone terminal or microcomputer who

had a specific decision (non-repetitive, semi-structured) to make. (Some of the early

literature even recommended matching the user interface to the "cognitive style4 of

the decisionmaker). However, recent advances in computer technology, information

systems, and telecommunications have facilitated a broadening of the scope of a DSS

to include organizational units and, in some cases, entire organizations..w.ia_

follows, I will use the term "organizational decision support systeml (ODSS) to refer

to a DSS that is used by persons at several workstations in more than one

organizational unit who make varied (interrelated but independent) decisions using a

common set of tools. I will refer to the more traditional single user or single purpose

system as a traditional decision support system (TDSS).

The basic building blocks of an ODSS are the same as those of a TDSS,(eg -
4

Fig. 1):

" f model base (and model management system)'

* database (and database management system) / -.

* user interface (a dialog system that manages the interaction between the

user and the other two components)

1 This paper was prepared for delivery at the 23rd Hawaii International Conference on Systems
Sciences, Kailuha-Kona, Hawaii, January 2-5, 1990.

-2-

Database
Model base

Database I Model
Managemen' Management

Dialog
Management SoftwareSystem

Task
Environment

Fig. 1-Components of a DSS

-3-

But ODSS's are not simply big TDSS's. There are important differences. These

differences lead to big differences in how ODSS's should be designed, developed, and

maintained. In this paper I will discuss these differences, illustrating my points with

examples from an ODSS that is currently being implemented by the U.S. Air Force.

The system, called the Enlisted Force Management System (EFMS), is being used tohelp members of the Air Staff in the Pentagon make decisions related to their

enlisted personnel. For an overview of the EFMS, see [Carter, et al., 1983].

Management of the enlisted force means making decisions about force

structure, promotion policies, and the procurement, assignment, training,

compensation, separation, and retirement of personnel. These functions (and their

support activities) are spread among five major, somewhat independent,

organizational units, led by four different two-star generals (three report to one

three-star general; the other reports to a different threc-star general). (See Fig. 2 for

a chart showing the relevant organizations.) The five organizations reside in three

geographically dispersed locations: three are in the Pentagon, one is at Boiling Air

Force Base, about 20 miles away, and one is at Randolph Air Force Base in San

Antonio, Texas. The EFMS was designed and developed jointly by a team of Air Force

personnel and analysts from the RAND Corporation. The project (called the Enlisted

Force Management Project, or EFMP) was begun in 1981. Implementation began in

1986, and is still continuing. To date the project has consumed over 120 man-years of

effort.

I first discuss differences between the purposes of an ODSS and TDSS. The

remainder of the paper highlights the major differences in how they are built and

maintained.

Accession~ For
NTIS GRA&I m]''

.DTIC TAB

Unannounced 0lJustification

' "/ By-
Distrbutio/
Availability Codes

Avni3 and/or
'1tst Spocjal

'p-

-4-

-00

z mz

<0

0<

uu~

cc 0 0

C6-

m0

0 0

LW 0

cc N

cc

C z 06

5-

II. PURPOSES

The primary purpose of a TDSS is to improve the performance of an individual

decisionmaker-to improve the quality of his or her decisionmaking by improving its

effectiveness and efficiency. This is certainly one of the purposes of an ODSS.

However, its purposes are broader and more far-reaching. There are a multitude of

organizational goals that a well-designed ODSS can benefit.

Most of these benefits result from the fact that an ODSS provides a means for

communication and coordination among the various parts of an organization-among

personnel at the same or diffprent levels in the same organizational unit, and at the

same or different levels across organizational boundaries. Since the entire

organization shares a commo'n database, as soon as a decision is made (e.g., the list of

Air Force occupations that will be offered a bonus) the database is updated and the

latest information can begin to be used immediately by others in the organization.

This helps to i,-tegrate and unify an organization, and improves control and

consistency. It also improves the efficiency and effectiveness of organizational

decisionmaking (in addition to individual decisionmaking).

Bidgoll [1989, p.60] offers the example of a high-tech company. Before it

implemented a ccst-based DSS, different division managers would provide different

prices for a finished product. The establishment of an on-line cost-based ODSS

significantly improved the interpersonal communication and the intergroup

coordination of these executives. His conclusion is that, by providing comprehensive

information regarding the entire organization, "the overall control of the

organization, including control over costs, inventory, and personnel, will be

improved."

In the Air Force case, different organizations within the Air Staff used to use

different models for projecting the future composition of the enlisted force. It was

impossible to determine whether differences in the projections were due to different

policies or different models. Now it is clear that differences in projections are due to

differences in the policies.

-6-

11. PHASES OF DEVELOPMENT

The development of an ODSS requires a formal, structured approach, since we

are talking about a large, complex, system programming effort. But this does not

mean that it should be developed using a traditional system development life cycle

(SDLC) approach (see, for example, [Lucas, 19851), or that its design is frozen before

work is begun. Most of the DSS literature is in agreement that such approaches are

inappropriate for an environment in which users will learn more about their problem

or environment as they use the system, and may identify new and unanticipated

information needs. In these situations, an "iterative" [Sprague and Carlson, 1982,

p. 1391, "adaptive" [Keen, 1980 approach is preferred.

The approach to building an ODSS that we recommend (and that we used on

the EFMP) is a combination of the SDLC and iterative/adaptive approaches. It

divides the process into four phases. The first two phases of the process are

structured, and provide a framework for the development of the system. The third

phase is iterative/adaptive, involving prototyping for the development of the system's

modules. And the fourth phase uses both approaches. The phases are:

1. GettinZ started. This is the orgnnizational phase, and is not iterated. It

includes the following activities:

- Needs assessment. What is wrong with the existing system and what

would it take to solve it? What would be the objectives and goals of

the ODSS? Does building an ODSS for thcz. parpozcz . z:,;c?

(This is the "problem definition" stage of the SDLC approach.)

- Getting management support. This means formulating functional

recommendations for an ODSS, selling the idea to top management,

and obtaining a commitment (and resources) to build the system.

(This is the"feasibility study" stage of the SDLC approach.)

- Getting organized. This involves setting up a steering committee

and identifying the members of the project team (see Sec. IV).

- Getting a plan of action. This involves laying out the plan for the

development process. What steps must be carried out? What specific

problems would the ODSS address (and what would it not address)?

L!

-7-

In what order should the problems be addressed? How will team

members communicate with each other? How will work get

documented? How will decisions get made? (This is the "systems

analysis" stage of the SDLC approach.)

2. Developing the conceptual design. This is the most important phase in

developing an ODSS, and it is not iterated. This phase produces a

blueprint for the system, which serves to guide subsequent decisions

made by the system's builders. As Brooks [1975, p.421 says, "It is better to

have a system omit certain anomalous features and improvements, but to

reflect one set of design idea:,, than to have one tho* contains many good

but independent and uncoordinated ideas." (This is somewhat like the

"systems design" stage of the SDLC approach, but the resulting design is

less specific.) This phase is discussed in somewhat greater detail in Sec.

V.

3. Developing the system. This phase is discussed in Sec. VI. It includes two

types of activities:

- Designing the physical system. This activity includes choosing the

DSS Generator and other software, choosing the hardware, and

designing the database.

- Developing the system's models and database. Models are usually a

more important factor in an ODSS than in a TDSS. But the

approach to developing them is basically the same for both types of

systems - prototyping.

4. Implementing and maintaining the system. This phase (which is a

combination of the iterative and SDLC approaches, and which continues

indefinitely) is discussed in Sec. VII. It includes:

- Installing the physical system.

- Programming and updating the system's modules. (We refer to the

computer programs as modules and their mathematical specifications

as models.)

- Creating and updating the database.

-8-

- Documenting the modules and database.

- Training users.

Most of the first two phases should be carried out as if the system were being

developed using a traditional System Development Life Cycle (SDLC) approach. This

provides a framework and structure that will allow the flexible, adaptive, iterative,

staged implementation of the system in the final two phases. Since there is an

extensive literature on the SDLC, further details about the activities in these two

phases will not be discussed. However, since the management of the development of

an ODSS is so different from the management of the development of a TDSS

(although it is consistent with an SDLC approach), we discuss this aspect in the

following section; since the design of an ODSS is so different from the design of a

traditional information system, we discuss aspects of the design in Sec. V. The final

two sections deal with activities in the final two phases.

-9-

IV. MANAGEMENT

Building an ODSS is a much more significant undertaking than building a

TDSS. In the latter case, the literature suggests that an ad-hoc approach can often

be used, involving in some ctses only the user (a "user-developed DSS" [Turban,

1988, p.1 3 3 1, a builder (programmer/analyst) and a user (see [Keen and Gambino,

1982, Fig. 7.51), or a user with some help from an informatiGn center [Turban, 1988,

p.1211. In contrast, an ODSS requires a much more structured approach-a team

effort involving persons with a variety of skills at different levels of the organization

and in different organizational units.

This difference can be compared directly to the difference that Brooks 119751

identified between writing a computer program and developing a programming

system product. A program is "complete in itself, ready to be run by the author on the

system on which it was developed." It might be able to be produced cheaply by one or

two programmers in a short amount of time (say y man months). A programming

system product is "a collection of interacting programs, coordinated in function and

disciplined in format, so that the assemblage constitutes an entire facility for large

taskks." Its individual programs must have been thoroughly tested and documented.

In addition, its programs must be tested together in all expected combinations, and it

must be designed to use only a prescribed budget of resources (e.g., memory space,

computer time). According to Prooks, to make the original program (say, a TDSS)

into a component of the system product requires 9y man months and, more

important, requires the efforts of a team, not just one or two programmers.

What is needed is a structured approach involving two groups of people-a

steering committee and a project team (discussed in this section)-plus a blueprint

for the system, which we call its conceptual design (discussed in Sec. V). (Thierauf

1 1988, Fig. 7-21 suggests a similar approach. But he breaks the project team into two

parts: the builders and the users.)

The steering committee, composed of top- and middle-level managers from all

organizational units that will involved in building or using the ODSS, or that will be

affected by it in some: direct way, provides overall control and direction to the project.

It makes policy decisions, assigns priorities, monitors progress, and allocates

resources. It meets regularly (on the EFMP, the steering committee met quarterly).

At these meetings, participants:

- 10-

* see presentations by members of the project team (progress reports)

* get an understanding of the status of all work in progress

* decide on the schedule for future work

* resolve problems (e.g., allocate resources, assign priorities, obtain access

to data)

The status of the members of the steering committee and its role in the project

enables it to serve as a buffer between the project team and the organization's top

management. It could easily promote the project with top management, disseminate

information on the project's progress, and help smooth implementation of the system.

The project team is composed of staff members from all of the affected

organizations (in roles as builders or users) plus, at its core, builders employed in a

technically-oriented System Management Office (SMO). As in the case of a TDSS,

development of a successful ODSS requires the active involvement and participation

of the users from the very beginning. The system will be designed arourd them.

They need to believe that it is "their system". Some organizational units (e.g., -ance

departments) also have their own analysts and programmers. The team should

include them, because their knowledge of the users' problems will be helpful, and

because they may be helpful in updating and maintaining the system. Some

organizations may not have enough internal analytical support to design an ODSS.

In this case, they might hire outside analysts to write the mathematical

specifications for the system's model's. In the case of the EFMS, the Air Force asked

RAND} to play the lead analytical role. In particular, RAND's major responsibilities

were to:

" develop a conceptual design for the EFMS

* develop the mathematical specification for all models in the system

" provide system programmers with advice on input formats and output

reports

* provide advice on desirable hardware capabilities

* help the Air Force to implement the system and set up procedures for

operating and maintaining it

But responsibility for the design, development, implementation, and

maintenance of an ODSS should be assigned to the SMO, which is not one of the user

organizations, but is an organization housing technical experts (software, hardware,

statistics, etc.) whose sole raison de etre is to build and maintain the system and

provide support to its users. This approach will help to reduce conflicts among

organizational units.

The SMO should be set up at the very beginning of the project. Its head should

be made the project leader. Its role on the project (and personnel numbers and

expertise) will change over the course of the project, but it has things to do during all

phases (design, development, implementation, and after implementation). During

the design phase, it would be the responsibility of the SMO to:

* identify the specific needs of the various users of the system

* design the physical system

* select the DSS Generator

• select the system's hardware

During development and implementation, the SMO would:

" procure the hardware and software

* prepare the central computer facility and set up user workstations

* develop standards and procedures for programming, database manage-

ment, and user interaction

* develop standards for documentation

* program the system's modules (including testing the modules)

* create the system's database

* document the modules and database

• develop training materials

* keep potential users informed of progress

As soon as one or more of the modules of the ODSS has been implemented, the
attention of the SMO must begin to shift toward maintenance and updating. During
development and implementation, the SMO, in consultation with the project team,
would:

- 12-

* train users (and answer questions as they arise)

* distribute hard-copy reports produced by the system

• update documentation of the modules and database as changes are made

* maintain and update the database

• maintain and modify the modules

The SMO is clearly more than a programming shop or MIS department. In

addition to its technical responsibilities, the SMO (under the guidance of the project

team) must play the role of a change agent, keeping the users involved throughout

the development period and making sure that they understand what is happening

and why. The work that this group does before implementation will determine to a

large extent how successful the system will be. People in organizations are more or

less resistant to change according to the way that change is introduced. To help

improve chances for successful implementation, the SMO should consider such

organizational and behavioral questions as:

* How will existing procedures be changed?

* Which jobs will be most affected and in what ways?

* How can the people affected be prepared for these changes?

• What sort of training will the affected people need?

* What is the best timetable for implementing the changes?

Some organizations already have an Information Center, which can serve as

the SMO for an ODSS. Several companies (e.g., Northwest Industries, American

Airlines, and Sun Oil Company) have formed DSS departments, which contain a

group of people who have the necessary skills and capabilities to be DSS builders.

The talents required are many, which implies a large and diverse project team.

Successful design, development, and implementation of an ODSS requires persons

with an understanding of the problem area, plus expertise in such areas as

mathematical modelling, statistics, database management, computer programming,

organizational behavior, and human factors engineering. Leaving out any of these

disciplines might lead to problems. And all of these perspectives on building the

system should ideally be represented on the team from the beginning of the project,

since it is hard to change direction once the project is under way.

- 13-

Successful functioning of the project team requires continual interactions, good

information flows, and close working relationships among team members. This is not

so hard in the case of a TDSS, since the members of the team are in only one or two

organizational units. But an ODSS project team includes persons from many

organizational units who might even be geographically dispersed. The EFMS project

team included persons in Washington, D.C., San Antonio, Texas, and Santa Monica,

California. We used a wide variety of means for communication and coordination,

including:

* trips by team members to other locations

* use of common computing facilities and common databases (via

telecommunication)

" numbered memos distributed to all team members, accessible at all

times in a book maintained by a designated person at each location

* exchange of information by telephone, overnight mail service, facsimile,

and electronic mail

" use of an action plan, defining tasks, schedules, and responsibilities

The most efficient and effective way of organizing the project team is likely to

be the "surgical team" approach recommended by Brooks [1975] for organizing a

system programming team. In this approach, a single person (the "surgeon") is made

responsible for a module of the system. He personally defines the functional and

performance specifications, designs the program, codes it, tests it, and writes its

documentation. Other members of the team with specific expertise (e.g., database

management, statistics, programming) provide support to this effort. The success of

this approach depends upon starting out with conceptual design of the entire system

that has "conceptual integrity"--i.e., it is clear what the pieces are and how they

relate to each other. If this approach is used, it is then possible to have separate

teams working independently to develop different modules, and still have them

integrated into a coherent system.

- 14-

V. CONCEPTUAL DESIGN

The conceptual design of an ODSS tells what should happen; implementation

tells how it is made to happen. According to Brooks [1975, p.441:

For a given level of function, . . . that system is best in which one can
specify things with the most simplicity and straightforwardness ...
Simplicity and straightforwardness proceed from conceptual integrity.
Every part must reflect the same philosophies and the same balancing
of desiderata Ease of use . . . dictates unity of design The
separation of architectural effort [conceptual design] from im-
plementation is a very powerful way of getting conceptual integrity on
very large projects.

Once it has been decided that an ODSS will be built, but before any work is

done on specifying hardware, software, or models, it is necessary to produce a

conceptual design. The design must include at least the following elements:

* Design principles, which will guide all decisions for the remainder of the

project

* Functions to be supported

* Models to provide the support, how the models would work (including

inputs and outputs), and the relationship among the models (e.g., a

flowchart showing interconnections)

* Data requirements (generic data; no file names or database layouts)

* Hardware and software considerations (hardware configuration and

software capabilities, not specific equipment and languages)

* Approach to implementation (structure of SMO, priorities, prototyping

strategy, documentation rules, responsibilities of participating organi-

zational units)

DESIGN PRINCIPLES

Five principles guided the design of the EFMS. These principles are widely

stated in the DSS literature, but are easier to say than to do. By stating them before

any development work was begun, they guided the entire system development

process. The principles were:

- 15 -

1. Improve the effectiveness and efficiency of enlisted force management

and decisionmaking

2. Place the user in control

3. Make the system fast, inexpensive, and easy to build

4. Make the system flexible, adaptable, and easy to maintain

5. Coordinate and integrate the decisionmaking environment

The first four principles apply equally well to TDSS's. Principle 5 is one of the

most important reasons for building an ODSS instead of a separate TDSS for each

function.

These principles, although traditional and obvious, had important implications

for the design of the three basic components of the EFMS: the database, model base,

and user interface.

Model Base

The desire for flexibility, adaptability, and easy maintainability suggested the

use of an interlinked system of many small models (or modules), each designed for

one specific purpose, instead of a few complicated, comprehensive, large models. A

module can be used by itself to study the impacts of a proposed decision on a specific

portion of the organization, or interactively with other modules to study the wider

impacts.

The modular approach to modeling is attractive for a variety of reasons. In

addition to mitigating the problems inherent in building a single large model, it

makes it easier for users to understand (and accept) the models in the system. The

modular approach also makes it relatively easy to adapt to a wide variety of

circumstances, availability of data, and types of analyses without having to incur

large amounts of time, skill, and confusion in reprogramming.

Modules also make it easier to use the "surgical team" approach to writing the

DSS computer programs. As Miller and Katz [1986] explain: "The various modelers

need communicate about the inputs and outputs of the submodels for which they are

responsible, but they do not have to understand each other's submodels in detail."

- 16-

Database

The desire for coordination and integration led to the specification of a

common, consistent, easily accessed, centralized database for the system. The

database would provide input to the modules, would retain output from the modules

for management reports, and would be available for direct inquiry by users.

Information generated by one module would be automatically (and instantaneously)

available to other modules. Data both internal and external to the organization

would be included. (For example, the EFMS database includes information on the

inentory of airmen and data on the U.S. economy.)

The system need not have a single, unified, integrated database. In the EFMS,

each module currently has its own database. But database administration should be

centralized (assigned to the SMO), responsibility for updating and maintaining each

item of information should be assigned, and each piece of information should be

stored in only one place. Also, since the system is being used by different

organizational units, there must be privacy and security provisions built in. Some

users would be unable to access certain information and those permitted to change

data in the central database would be specifically linked to those items of data for

which they were responsible.

User Interface

The primary implication of the design principles for the user interface is that

the system have a common interface for all of its elements; that is, that dialogues be

managed in a uniform fashion regardless of the particular module being run. Of

course, each module would have different specific input and output screens. But each

would enable the user to do the same types of things in the same ways. For example,

if the user wanted to run a module, modify a parameter vabie, or name an input data

file, he would use the same procedure for all modules. Also, since the users of the

EFMS were not programmers, we decided that the interface should be menu driven,

easy to learn, and easy to use. The user (without the help of a programmer) would be

able to

* request information from the database

" make temporary or permanent changes to data in the database

* specify parameters and input data for a module

* run a module

" tailor output reports (scope, aggregation, time periods)

-17-

FUNCTIONS TO BE SUPPORTED

This is another major difference between the focus of TDSS and ODSS

development. The focus in the development of a TDSS is usually on the individual

decisionmaker. Screens are often designed by him or to his specification, and

interface protocols (e.g., menus, logic, etc.) are designed to match his decisionmaking

style. This is the view of a TDSS that Wagner [1981] refers to as Executive Mind

Support. According to him, "Executive Mind Support is the intimate coupling of a

system (a DSS) with the mind of an executive, with close rapport and two-way

communication, for the executive's own purposes and on his own terms. It is a

special relationship by which the system actually supports and extends the

manager's own thinking processes."

The focus in the de% .;opment of an ODSS is on the functions to be performed.

The ODSS is part of a unified, organizational approach to problem solving. It must,

therefore, be designed with a consistency and unity that is inconsistent with f focus

on individual differences. Also, as Huber [1983, p.575] suggests, each function in an

ODSS is likely to have different users over time, as job incumbents move through a

position. "Thus a flexible rather than an idiosyncratically constrained design seems

called for." In the words of Carlson [1979, p.191, "if a DSS is to support varying

styles, skills, and knowledge, it should not attempt to enforce or to capture a

particular pattern."

Thus, on the EFMP, the conceptual design document was devoted almost

exclusively to a functional description of the system-the constituent modules and

their interconnections. The user interfaces were designed in conjunction with the

incumbents in the user positions, but the idea was to make sure that all of the

information needed by a person in that position would be available in an

understandable and usable format. Screens were designed assuming "average" user

behavior, so the modules would be useful to practically any user (of course the

screens can be changed if a new user doesn't like something). Because of officer

rotation, several of the modules have already had several "owners".

By focusing on functions, the builder of on ODSS can avoid two other pitfalls

that can lead to the failure of the system. First, the pitfall of designing the system to

reflect current organizational responsibilities and interactions. Some systems are

designed too closely around an existing organizational configuration. Organizations

change frequently (e.g., departments move around on the organization chart), but the

functions that have to be carried out within the organization are more stable. So, if

- 18-

modules are designed for functions not organizational units, use of the modules can

be transferred to new organizational units when the functions are transferred. At the

beginning of the EFMP, the Directorate of Manpower and Organization (see Fig. 2)

reported to the same three-star general as all of the other organizations using the

EFMS. In the middle of the project, the "manpower" functions were split off from the
"personnel" functions, and assigned to a different three-star general. This had no

effect on the design or implementation of the EFMS.

Second, focusing on functions can avoid the pitfall of using the implementation

of a system for rationalizing decisionmaking as an excuse for trying to rationalize the

structure of the organization. In studying the existing system in Phase 1 of the

ODSS development process, it will probably become clear that improvements in the

efficiency and effectiveness of decisionmaking can be made by changing the structure

of the organization. It is tempting to write a report that recommends that this be

UW"Ie ia addi ion to the construction of an ODSS, and that the design of the ODSS be

made dependent upon the new structure. Unless your tasking for Phase 1 explicitly

includes a requirement for producing recommendations on organizational design, you

should steer clear of this. Focusing on functions allows you to do so. The first RAND

project leader on the EFMP (I was the second) recommended a consolidation of the

three directorates responsible for manpower and personnel decisionmaking as part of

the EFMS design. As a result, the general in charge of one of the directorates tried to

cancel the entire project. (You can submit a separate report making some suggestions

for organizational changes. But this should not be tied to the ODSS development

effort.)

MODELS

The conceptual design of an ODSS should include a listing of the modules the

system will eventually contain, a short description of the function of each one, their

major inputs and outputs, and a flowchart showing their inLerrelationships. Just as

it is useful in forming the project team to forecast the needs to the end of the project

and include all necessary skills from the beginning, it is important to try and specify

the full functional scope of the system at the conceptual design stage. This will make

it easier to construct a coherent, integrated, unified system. Without this framework,

it is likely that the system will end up a fragmented patchwork-quilt, held together

by baling wire. With this fram-work, the system can be developed in an iterative,

- 19-

adaptive way. Whenever a module is ready to be added to the system, it can be

plugged in, and the connecting hooks will be in place to greet it.

Figure 3 is the summary flowchart for the EFMS that appeared in the

conceptual design document [Carter, et al., 19831. It indicates the four major sets of

modules in the system, their major inputs and outputs, and their interrelationships.

The conceptual design also included more detailed flowcharts for each of the sets of

modules, which showed each specific module, its inputs, its policy levers (i.e., decision

variables), its outputs, and where the outputs were to be sent (e.g., reports to

Congress or the Department of Defense).

DATA

An ODSS has much more demanding needs for data than does a TDSS, and

more attention has to be given to this aspect of the system. In general, there are four

different types of data that are used during the course of building an ODSS. These

are data:

1. to understand or define the problem situation being addressed

2. to estimate the models

3. to validate the models

4. to run the models (input data)

We call the data for the first two uses "analysis files", since they are primarily

used by analysts engaged in defining and building models. The other two types of

data are "operational files", which are created and used by the SMO.

A great deal of thought must be given to data issues at the conceptual design

stage, and a great deal of time must be allocated to creating these databases during

the development of the system. Projects that make extensive use of large data files

usually underestimate the amount of effort required to create useful databases. We

estimate that between 25 percent and 40 percent of the effort on the EFMP was

devoted to collecting, cleaning, and analyzing data.

The conceptual design document should try to estimate the amount of data

that will ultimately be required within the system, where the data would come from,

and a strategy by which data files can be added to the system as modules are added

without affecting the integrity or the consistency of the database.

-20-

System Inputs:
•Authorizations, unconstrained

by grade, projected for Y years
* Projected end strengths for Y years
* Program costs
* Manpower costs
* Budget constraints
* Current inventory, recent ,h;inges

and agreed plans
•Et cetera

Poliy lver & onstains GadeGuide Protiles for Y ,'earz,
(e g., promotion & separatinn I! profile accessicn plins. and

rue)pimmntcri plans ny grad']

Policy levers & constraints G radle Agce au thorzations
e.g_feeder/lateral restructurin (targets): AFS by grade

/ Policy levers & constraints Module,,

(e~g .allowed tradeoffs) foInomto on ogrume,:
programmsing and revised progrdms

*irrcluding an inventory projection module in which loss rates are calculated as functions of
historical patterns, Air Force policies, and external conditions

Fig. 3--Summary flowchart of the EFMS

-21

A principle that we included In the conceptual design for the EMS for making

the systemn easy to update and maint-ain was that the data required by the modules

should be as easy to obtain as possible We sai th-at the input data should not

reqiuire extensive preparation or previous analys"is and Aoiild be routinely collected

by tlhe Alr F'orce or sonie ALih1e external srource ('.,uch as the ce(.nsus Burcau or

Department of Labor).

HARDWARE AND) SOFTrWAHk'E

.-\ithough the2 fuiactionai .)f~trtor tan O[)SS can be acconiplishced xithout

con, o(Iring tOe physi(L, ifln v I roil mrent wi thlin which t will be i mph :,ni-nted, it I;, ,;ti 11

inporta;-;i to incha(1r- ixh idrtjnIn the conceptual dusign dociimc o tGthi~s

point, ''oly "he g-lnerill outiirif-, of the hardware and software required to suppor, the

S't.SLPT are ta' he Fpe(:uied. This Information serves two pu rpose2':

1. Thew orlminizqtiori s managemnert needs sach Infnrmation in ordel to

te-,winate the '%Aem'F devcdopment cost

2. The stmsusers1 need such infurmation to understnd how the system

will work andl how they will flt into it.

Since the systiem w~ill be siippcirting users throughout the organization, it Is

likely that one of t-w o typtes of distri!buted data procensing ap~proaches would be used:

aI r: infrairne ihnk-i with PCUS or uczcr vorkstat ons throughalclae ewr

(LAN), or (2) user work sta loti linkedl with a cntral fileserver throu.gh an, LAN. The

general physical conFiguration speclied for the EF'MS is shown in Fig 4. End users,

in) geographically dispersed sites, would utilize microcomputer workstations.

Tiunugh a high-level, Englis;h-like command language, he Or she would interact with

both an inuvrated dlatabase anid an interlinked system of modules, both of which

would reside on a mainframe computer. The software would combine a wide rang.- of

capabilitie:s in a single package fs' e Fig. 5). Both Figs. 4 and 5, which are part of the

conceptual design, show generic functions and capabilities. The actual selection of

the hardware and software comes during the development phase (see Sec. VU).

- 22 -

eE E

£ a
C:~

EU

E C

coc

0- c

M4

U o
-- E~..

0w

C 0

- 23 -

0U

U)
CC E

al z 0- 0

U) 0

2 M C ~ cz

CU0.

u)'
CD) C-

0U

U)'

- 24-

Developing, Implementing, and Maintaining the System

Up until these last two phases, the building of an ODSS has been carried out

according to the traditional System Development Life Cycle approach for building

information systems. But the development, implementation, and updating of an

ODSS apply the middle-out [Hurst, Ness, Gambino, and Johnson, 19831, iterative

[Sprague and Carlson, 1982], adaptive [Keen, 1980] principles found in the DSS

literature. Middle-out development is based on building and using early prototypes of

the modules to get quick feedback on their form and substance. Iterative design

involves continual improvements to the system until the users' requirements are

satisfied. Adaptive design advocates a process of continually modifying the DSS to

meet changing needs and conditions. We called our approach to building the EFMS
"staged implementation".

In staged implementation, some modules are developed in parallel with others,

and some are developed sequentially, in priority order. Use of a module can begin

whenever it has reached the point that a user feels comfortable trying it. In addition

to the implementation of modules one at a time, development of each module is an

iterative process involving several members of the project team (at least an analyst, a

programmer, and the user) that includes some or all of the following:

" conceptual design (with the user intimately involved)

* mathematical specification (which includes mathematical modeling,

estimation of the parameters of the model, and validating the model

using historical and/or hypothetical data)

* programming a stand-alone prototype of the module

* testing and using the prototype for some or all of its intended functions

(the user is the main participant in this step)

" evaluating the test

" revising and improving the mathematical specification (which includes

the possibility of adding features to the model)

* reprogramming the module for inclusion in the system

" preparing the database that is needed for updating and reestimating the

model

* integrating the module into the system (which includes adding its input

data files to the system's database)

- 25 -

All of these steps would not necessarily be carried out for each module, and the

development of each module would not necessarily involve carrying out the steps

sequentially. There would be a lot of iteration and feedback among the steps. For

example, testing of the prototype might reveal problems that would return

development of the module to any of the previous three steps (even rethinking the

conceptual !, sign).

For smooth and efficient implementation, it is best to have the prototype built

and tested by the same group that developed the mathematical specification (not by

the system programmers in the SMO). Then, after the prototype is found to work

well, the system programmers can reprogram it. This enables errors in model

specification to be separated from errors in programming.

What I have described above is the "throwaway" approach to prototyping

iSprague and Carlson, 19821, in which, once the prototype is working as the

designers and users want, it is reprogrammed for inclusion in the system. There is

also an "evolutionary" approach, in which the prototype is modified to integrate it

into the system. We used both approaches on the EFMP. It is tempting to use the

evolutionary approach ("if it works, don't fix it"). But I recommend the throwaway

approach, since the prototype is usually not written for efficiency or maintainability.

(It may contain patchwork fixes, it may be hard to document, its data structures may

be inefficient, etc.)

The prototypes are likely to include some, but not all, of the features of the

final versions of the modules. The inputs, outputs, and user interactions of the

prototypes might be different from those planned for the final system. But there are

several good reasons for using their in their early versions:

Support for some areas of decisionmaking can be obtained early in the

system development process.

* Ideas can be tried out without incurring large costs

• Problems with the modules can be identified and corrected early in the

process.

* Users can gradually become familiar with the concepts, procedures, and

modules of the system, and, because they are participants, they will be

more likely to get exactly what they need.

* The System Management Office can gradually build up its organization

and procedures.

- 26-

As Jenkins [19831 has found (based on examining over 120 prototype systems),

prototyping usually results in greatly reduced systems development time, lower

overall development costs, increased user satisfaction, and effective utilization of

scarce resources (inefficiencies are tolerated in machine utilization, not in people

utilization). He concludes that the success of prototyping is based on a simple

proposition: "people can tell you what they don't like about an existing system easier

than they can tell you what they think they would like in an imaginary system."

V

-27-

VI. DEVELOPMENT

I have described a great deal of the recommended approach to developing an

ODSS in the preceding sections. In this section I reiterate some of the points made

above, plus I describe an approach for choosing the system's software that is one of

the most critical steps in the development phase.

Successful development of an ODSS requires a great deal of cooperation,

communication, and intense effort among all members of the project team, plus

strong, clear guidance from the steering committee. Each of the actors has an

important role to play, and none can be omitted. On the EFMP, the major actors

were:

* The SMO (which included analysts, system programmers, database

builders, and hardware specialists)

" Potential users of the system, in various manpower and personnel

organizational units

* Analysts in various manpower and personnel organizational units

* The RAND Corporation (which supplied analysts for helping to specify

the conceptual design, for specifying the models, and for building

prototypes)

* The steering committee (which was directed by the head of the SMO and

RAND's project leader, and included other managers from the SMO and

various user organizations)

After the conceptual design document was written and agreed to by all parties,

a range of activities were begun. The steering committee specified development

priorities, RAND analysts were assigned to the various models, users were

interviewed about their needs, requirements for analysis data were formulated,

analysis data files were constructed, models were estimated and validated,

prototypes were built and tested, and the system's hardware and software were

chosen. In this paper I discuss only issues related to the creation of analysis data files

and the selection of the system's software, since most of the other issues apply

equally well to TDSS's.

- 28 -

CREATING ANALYSIS DATA FILES

ODSS data files (source data files, analysis files, and operational files) are

much larger than those in a TDSS. Source data are used to create both of the other

two types of files. But the source data usually consist almost entirely of secondary

data-i.e., data collected by others for purposes different from those of the ODSS. An

important (and time-consuming) task is to understand these data, clean them, and

use them to define other variables that are more useful for the purposes of the ODSS.

About one-third of RAND's effort on the EFMP was devoted to creating clean and

useful analysis files.

The process of using data to estimate models can be broken into two phases:

the audit phase (which embraces all steps in cleaning the data and increasing the

modeler's understanding of the data) and the analysis phase (which includes data

analysis and model fitting). Relles [19861 says that projects involving the analysis of

large data sets usually allocate about 60 percent of their resources to the analysis

phase, and only 40 percent to the audit phase. He suggests that it would be more

efficient and effective to allocate about 65 percent of the project's data-related

resources to the audit phase, including more time from the project leader and a

senior programmer. This is because it is hard to catch errors in large data files, but

errors can be costly if not caught early, and they may undermine the quality of the

models if they remain undetected. He suggests a systematic approach for data

cleaning and file creation, many aspects of which we applied on the EFMP.

SELECTING AN ODSS GENERATOR

An important principle for building a DSS (either a TDSS or an ODSS) is to

choose the software before choosing the hardware, if at all possible. Tailoring the

system to the problem situation and the needs of the user requires providing a set of

specific capabilities. There are likely to be few software products available that

provide all of these capabilities. By adding hardware constraints, the number of

possibilities is reduced even further, leading to the use of a product that may

seriously compromise the performance of the system.

Sprague and Carlson [1982] identify three types of software/hardware that are

included in the label "DSS".

Specific DSS. This is the combination of hardware and software that

helps a specific decisionmaker or group of decisionmakers deal with

- 29 -

specific problems. It is the product that we are concerned with in this

paper-the end result of the system development effort that we have

been discussing.

* DSS Generator. This is a software package that provides a set of

capabilities to build a specific DSS quickly and easily. It generally

provides most of the software capabilities needed by the specific DSS. The

choice of the DSS Generator is a very important decision. We discuss an

approach for making this decision below.

* DSS Tools. These are individual hardware or software elements that can

be used to develop either a Specific DSS or a DSS Generator. In general,

development of a Specific DSS from a DSS Generator is faster and more

econo--ical than using DSS Tools (just as writing a computer program is

usually faster using FORTRAN than machine language).

A Specific ODSS will normally be built by system programmers using a DSS

Generator and (perhaps) other DSS Tools. Most users will never learn about most of

the capabilities of the Generator or the Tools. This situation is distinctly different

from the relationship between DSS Generator and user that is often recommended

for a TDSS. In this case, the user is often expected to build his own Specific DSS

using the modeling language provided by the DSS Generator. (For example, Reimann

and Waren [19851 say that one of the purposes of a DSS Generator is to "enable

nonprogrammers to develop customized DSSs for specific applications.")

In the case of an ODSS Generator, some capabilities will be helpful to end

users, some only to the systems programmers, and some to both. For example, it

should provide the benefits of a nonprocedural language to users to make it easy for

them to operate the models, generate reports, and make inquiries against databases.

It should also insure that systems professionals have all of the facilities within the

package to write complex applications programs without having to resort to other

packages (e.g., for graphics, statistics, or modeling) to a large degree. This demands a

language that combines simplicity for one category of user with a powerful and varied

syntax for another.

The process of choosing an ODSS Generator is similar in some respects to that

recommended for choosing a TDSS Generator. But there some major differences.

For a TDSS Generator, it is recommended that end users be extensively involved in

the process from beginning to end, that the capabilities be directed toward the needs

-30-

of the end user, and that the end user control the selection process (see [Meador and

Mezger, 19841 and [Reimann and Waren, 1985]). For an ODSS Generator, I

recommend little end user involvement, capabilities directed toward the needs of the

application, the SMO, and the system programmers, and SMO control of the selection

process.

Since it is such an important decision, and since there are potentially so many

requirements and so many alternative packages to be evaluated, a structured

approach should be used to choose the ODSS. The process that we used on the EFMP

is similar to that suggested above for the first two phases of building an ODSS. It is

described in detail by Walker, Barnhardt, and Walker [1986]. The basic idea is to

carefully match the specific features and capabilities of the generators under

consideration with the characteristics and requirements of the applications to be

supported. The approach involves six steps:

1. Identify the overall objectives for the generator (what it should

accomplish and why).

2. Infer the general capabilities that the generator must have to respond to

the objectives. (See [Turban, 1988, p.2031 for a fairly extensive list.) The

general capabilities are likely to be very similar for most ODSS

situations. (E.g., provide a common database manager and allow

customized menus.)

3. Infer a set of specific capabilities that will satisfy the general capabilities.

The specific capabilities will generally differ for different applications.

(E.g., allow the use of data names that provide consistency with the

organization's naming conventions.)

4. Identify specific software products that have appear to have some or all of

the specific capabilities.

5. Perform an initial screening of the products that are obviously over- or

under-qualified (if over-qualified, you will be paying too much to satisfy

your needs). Screening can usually be done by using reference services,

reading product documentation and/or having vendors demonstrate their

products and answer questions about their capabilities.

6. Perform a detailed analysis of each of the remaining products. This

phase should be a systematic examination of product capabilities against

requirements. It might also include benchmark runs, coding of test

-31-

problems, an analysis of the reliability of the vendor, and the likely life of

the product and its support system.

On the EFMP, we identified ten general capabilities that the ODSS Generator

for the EFMS should have:

1. Data management (the ability to build, maintain, and manipulate

complex data structures, to provide access to information in a flexible and

responsive manner, and to facilitate use and sharing of data)

2. External interfaces (ways to transfer data into and out of the system, and

the provision of hooks to other programming languages (e.g. SAS,

FORTRAN))

3. Data analysis (facilities for the statistical analysis of data)

4. Inquiry (an interactive database inquiry facility that would allow users to

selectively view the data they need for a given task)

5. Report generation (default formats and customization)

6. Graphics

7. Command language

8. Multi-user support

9. System management facilities

10. Support for distributed data processing

Most of these capabilities are displayed graphically in Fig. 5. Note that all but

the last three of the general capabilities are ones that are likely to be specified for

many TDSS's. The last three ap'1v primarily to ODSS's.

After specifying these general capabilities, we defined specific required

capabilities within each category. For example, there were four specific required

capabilities within the Multi-user Support category, including "Provide safeguards

for the security and protection of data at the record level or below."

Then we began the search for and selection of a DSS Generator, which

involved the following steps:

" Reading technical publications and systems documentation

* Interviewing system users and talking to vendors

* Screening (12 of 20 products were screened out)

- 32 -

Detailed analysis of the remaining eight products

- Rating each product (yes/no) on each specific capability

- Giving a summary rating for each product on each of the ten general

capabilities

- Comparing the summary ratings of all eight products across all ten

categories (Table 1 shows this summary scorecard)

- Performing a benchmark test on a sample application

Table 1

SUMMARY EVALUATION FOR DSS GENERATORS

Express DSS A DSS B DSS C DSS E DSS F DSS G DSS H

Data management Yes No No No No No No No

External interfaces Yes Yes Yes No No No No Yes

Data analysis Yes Yes Yes No Yes No No No

Inquiry Yes No Yes No No No No No

Report generation Yes No No No No No No No

Graphics Yes Yes No Yes Yes Yes Yes No
Command language Yes No No No No No No No

Multi-u er support Yes No No No No No No No

System management Yes No No No No No No No

Distributed data

processing Yes No No No No No No No
Meets all criteria Yes No No No No No No No

Once the search was begun, it took approximately two years until the

necessary approvals were received to purchase the selected product. Three important

factors, other than our desire to do a careful and thorough search and evaluation,

contributed to the time and effort required to acquire the DSS Generator: federal

procurement directives, the large number of products, and internal resistance. The

last is a factor that is likely to be encountered by most builders of ODSS, and is not

generally addressed in the DSS literature.

There was considerable organizational reluctance to accepting a DSS

Generator as a means of developing and operating the EFMS. Part of this reluctance

stemmed from the fact that DSS Generators were a new concept to many, and a

certain amount of education was required before gaining acceptance of the idea. The

selection of the Generator was driving the supporting hardware options, and the

-33 -

Generator chosen required equipment that was incompatible with he systems then

in use. There was also concern about assuming the additional burden of operating

and maintaining these new computer systems. Also, historically, the emphasis had

been on developing and maintaining computer systems that emphasized transaction

processing. The unique needs of the Air Staff-which emphasized flexibility, user

control, quantitative and analytical capabilities, responsiveness, and the use of

7CG - -
PR M DPX -OPP

3081

!1IUSA

loa ae
[IEP

Fig. Force anagem ne two rchtctr

iMlC

- 34 -

summary data-were not immediately apparent. In the end, the compelling nature of

the arguments won most people over, and many Air Force personnel worked

diligently to acquire and implement the Generator.

Once the software was selected, the system's hardware configuration was able

to be specified in detail (see Fig. 6 for an overview of the hardware configuration),

and the process of procuring both software and hardware was begun.

- 35 -

VII. IMPLEMENTATION AND MAINTENANCE

The recommended approach for Phases 1 and 2 of the process of building an

ODSS basically followed the System Development Life Cycle (SDLC) approach.

Phase 3 departed from this approach, following instead the approach recommended

for building a TDSS. The recommended approach for Phase 4 is a combination of the

two approaches.

Many of the characteristics of an ODSS are similar to those of a traditional

information system--e.g., large data files, high activity levels, and many users.

Thus, some variation of' the SDLC approach is necessary and appropriate. In

particular, good SDLC practices for procuring and installing computer hardware,

creating standards and procedures for programming, creating databases,

documenting programs and databases, and training users are also applicable to an

ODSS.

However, unlike a traditional information system, a DSS is never fully

implemented. The middle-out, iterative, adaptive approach to building a DSS means

it is always evolving and changing. New modules are being added, old modules are

being revised to add capabilities, revise existing capabilities, respond to changes in

policy, etc. The implementation and maintenance process must recognize this

situation and must support and facilitate this constant process of change. Sprague

and Carlson 11982, p.1331 define four types of flexibility that a DSS should have:

1. The ability for the user to confront a problem in a flexible, personal way

2. The ability to modify the Specific DSS so that it can handle a different or

expanded set of problems

3. The ability to adapt to new capabilities in dialog, data management, and

modeling (i.e., to add capabilities to the DSS Generator)

4. The ability to evolve in response to changes in the technology on which

the DSS is based

Flexibility 1 facilitates use of the system and user satisfaction. The other

three flexibilities facilitate implementation and maintenance. Flexibility 2 is needed

to support the prototyping approach to module development. Flexibilities 3 and 4

make it easy for the SMO to continually improve the system.

-36 -

One of the big differences between most traditional information systems and a

DSS is that updating and maintenance of the modules (in addition to the database) is

of critical importance. This includes:

* Refitting parameters (finding new coefficients for the equations)

* Reestimating models (due to changes in the environment)

* Modifying programs in response to changing user needs

* Modifying programs in response to changes in the organization's policies

and procedures

Changing output reports in response to changes in reporting require-

ments

Murray 119891 describes procedures for updating the equations of one of the

models in the EFMS and explains how much effort might be involved. Updating the

equations involves four activities:

1. Adding data to the files used to estimate the equations

2. Reestimating the current specifications of the equations

3. Exploring possible respecifications of the equations to exploit the

additional data or to accommodate new EFMS needs

4. Testing and evaluating the new versions ofthe equations

Adding data to the files requires understanding the structures of three large

data files and understanding the programs that use these files to create the analysis

files. Reestimating the current specifications of the equations requires only

understanding the programs that calculate the estimates. However, exploring

possible respecifications is more demanding. It requires understanding: (1) the

statistical strategy underlying the estimation procedures, (2) the perils for estimation

inherent in the available data, (3) the uses to which the loss equations will be put, (4)

the programs for calculating estimates, and (5) how to adapt the equations in

response to information from the testing and evaluation exercise. Testing and

evaluating the new versions of the equations requires understanding: (1) the testing

programs, (2) the performance criteria used to evaluate the performance of the

equations, and (3) the purposes to which the equations will be put.

- :37 -

This is the process for a single model. Updating all the models in an ODSS

requires a considerable amount of work. But this work must be done if the system is

to continue to be useful and used. This is only one of the many activities that the

SMO must carry out. That is why I recommend that it be a separate organizational

entity. Other responsibilities during this phase include:

* Maintaining and updating the database

* Distributing hard-copy reports produced by the system

* Interacting with users (responding to questions, modifying programs,

delivering training)

Interacting with sources of information and technology (eyxernal vendors

and other departments in the same organization)

CONCLUSIONS

This paper has shown that, although many aspects of a TDSS and ODSS are

similar, there are important differences that must be understood if the ODSS is to be

successful. Differences in purposes lead to differences in design, differences in

managing the development effort, differences in implementation, and differences in

maintenance. In fact, some aspects of building an ODSS are more similar to building

a traditional information system than to building a TDSS. The suggested approach to

building an ODSS combines principles and good practice for building both types of

systems.

- 39 -

BIBLIOGRAPHY

Bidgoli, Hossein, Decision Support Systems: Principles & Practice, West Publishing
Company, St. Paul, MN, 1989.

Brooks, Frederick P., Jr., The Mythical Man-Month: Essays on Software Engineering,
Addison-Wesley Publishing Co., Reading, MA, 1975.

Carlson, E., "An Approach for Designing Decision Support Systems," Chapter 2 in
John L. Bennett (ed.), Building Decision Support Systems, Addison-Wesley
Publishing Co., Reading, MA, 1983.

John L. Bennett (ed.), Building Decision Support Systems, Addison-Wesley
Publishing Co., Reading, MA, 1983.

Carter, Grace M., Jan M. Chaiken, Michael P. Murray, Warren E. Walker,
Conceptual Design of an Enlisted Force Management System for the Air Force, N-
2005-AF, The RAND Corporation, Santa Monica, CA, August 1983.

Huber, George P., "Cognitive Style as a Basis for MIS and DSS Designs: Much Ado
About Nothing?," Management Science, Vol. 29, No. 5, May, 1983, pp. 567-574.

Hurst, E. Gerald, Jr., David N. Ness, Thomas J. Gambino, and Thomas H. Johnson,
"Growing DSS: A Flexible, Evolutionary Approach," Chapter 6 in John L. Bennett
(ed.), Building Decision Support Systems, Addison-Wesley Publishing Co.,
Reading, MA, 1983.

Jenkins, A. Milton, Prototyping: A Methodology for the Design and Development of
Application Systems, Discussion Paper #227, Division of Research, School of
Business, Indiana University, Bloomington, IN, April 1983.

Keen, Peter G.W., "Adaptive Design for Decision Support Systems," Data Base, Vol.
12, Nos. 1 & 2, Fall 1980, pp. 15-25.

Keen, Peter G.W. and Thomas J. Gambino, "Building a Decision Support System: The
Mythical Man-Month Revisited," Chapter 7 in John L. Bennett (ed.), Building
Decision Support Systems, Addison-Wesley Publishing Co., Reading, MA, 1983.

Lucas, H.C., Jr., The Analysis, Design, and Implementation of Information Systems,
McGraw-Hill, New York, 1985.

Meador, C. Lawrence and Richard A. Mezger, "Selecting an End User Programming
Language for DSS Development, MIS Quarterly, December 1984, pp. 267-280.

Miller, Louis W. and Norman Katz, "A Model Management System to Support Policy
Analysis," Decision Support Systems, Vol. 2, No. 1, March 1986, pp.5 5 -6 3 .

Murray, Michael P., Middle-T,rm Loss Prediction Models for the Air Force's Enlisted
Force Management System: Information for Updating, N-2764-AF, The RAND
Corporation, May 1989.

-40-

Reimann, Bernard C. and Allan D. Waren, "User-Oriented Criteria for the Selection
of DSS Software," Communications of the ACM, Vol. 28, No. 2, February 1985, pp.
166-179.

Relies, Daniel A., Allocating Research Resources: The Role of a Data Management
Core Unit, N-2383-NICHD, The RAND Corporation, January 1986.

Thierauf, Robert J., User-Oriented Decision Support Systems: Accent on Problem
Finding, Prentice Hall, Inc., Englewood Cliffs, 1988.

Turban, Efraim, Decision Support and Expert Systems: Managerial Perspectives,
Macmillan Publishing Company, New York, 1988.

Wagner, G.R., "Decision Support Systems: The Real Substance," Interfaces, Vol. 11,
No. 2, April 1981, pp. 77-86.

Walker, Robert G., Robert S. Barnhardt, and Warren E. Walker, Selecting a Decision
Support System Generator for the Air Force's Enlisted Force Management System,
R-3474-AF, The RAND Corporation, Santa Monica, CA, December 1986.

